
Automated Data Discovery in Similarity Score
Queries

Fatih Altiparmak1, Ali Saman Tosun1,2,
Hakan Ferhatosmanoglu1, and Ahmet Sacan1,3

1 The Ohio State University, Dept. of Computer Sci. & Eng., Columbus, OH
{altiparm,sacan,hakan}@cse.ohio-state.edu

2 The University of Texas at San Antonio, Dept of Computer Science
tosun@cs.utsa.edu

3 Middle East Technical University, Dept. of Computer Eng., Ankara, Turkey

Abstract. A vast amount of information is being stored in scientific
databases on the web. The dynamic nature of the scientific data, the
cost of providing an up-to-date snapshot of the whole database, and
proprietary considerations compel the database owners to hide the orig-
inal data behind search interfaces. The information is often provided
to researchers through similarity-search query interfaces, which limits a
proper and focused analysis of the data. In this study, we present sys-
tematic methods of data discovery through similarity-score queries in
such “uncooperative” databases. The methods are generalized to multi-
dimensional data, and to L-p norm distance functions. The accuracy and
performance of our methods are demonstrated on synthetic and real-life
datasets. The methods developed in this study enable the scientists to
obtain the data within the range of their research interests, overcoming
the limitations of the similarity-search interface. The results of this study
also present implications in data privacy and security areas, where the
discovery of the original data is not desired.

1 Introduction

An ever growing amount of information is being served on the Web. Some of
this information is in the form of inter-linked HTML pages, which are crawled,
indexed, and made accessible by the search engines such as Google (google.com),
Yahoo (yahoo.com), and MSN (msn.com). The portion of the Web that is ac-
cessible via search engines is termed the surface Web. A far greater amount of
information is believed to be hidden behind databases whose content is not ac-
cessible through static URL links. It was estimated that this deep Web contained
7,500 terabytes of data – 500 times larger than the surface Web [5].

The information in the hidden Web is available only as a response to dynam-
ically issued queries to the search interface of the databases. Recent efforts have
focused on categorizing these databases at the absence of content summaries [13],
or on building meta-search engines that provide a unified search interface to these
databases [20]. However, most of these efforts were limited to text databases and
ignored the numeric databases prevalent in scientific repositories.

J.R. Haritsa, R. Kotagiri, and V. Pudi (Eds.): DASFAA 2008, LNCS 4947, pp. 440–451, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automated Data Discovery in Similarity Score Queries 441

In scientific databases, the data is usually represented as multi-dimensional
feature vectors. Due to the nature of the data and the large quantity of in-
formation, similarity search has emerged to be the de facto form of query in
scientific applications such as high-energy physics [24], geographic information
systems (GIS) [6], financial time series databases [14], medical imaging [19, 17],
and bioinformatics [15].

The degree of similarity between objects in a database is often quantified by
a distance measure, e.g., Euclidean distance, operating on the multi-dimensional
data objects or the feature vectors extracted from the data objects. For example,
a user may pose a query over a medical database asking for X-rays that are
similar to a given X-ray in terms of Euclidean distance of multi-dimensional
texture feature vectors [18, 16]. 3D Shape histograms of proteins are used to
identify their similarities [1]. Similarity query is usually implemented by finding
the closest feature vector(s) to the feature vector of the query data. This type of
query is known as nearest neighbor (NN) query [21] and it has been extensively
studied in the past [11, 12, 23, 2, 3, 9, 4, 7]. A closely related query is the ε-range
query where all feature vectors that are within ε neighborhood of the query point
q are retrieved.

Bandwidth and resource constraints and the continuous nature of the data
acquisition itself, whether it be from manual contributions from researchers or
automated sensor input, make the maintenance of an up-to-date, downloadable
snapshot of the whole database unfeasible. Therefore the database providers
limit the data access to the similarity query interface they provide. Still other
providers practice this limitation due to privacy or proprietary concerns.

Even though similarity query over the database is one of the first steps of gain-
ing valuable information about the entity under consideration, it is insufficient
for further scientific investigation. The scientists often seek to acquire a portion
of the database relevant to their research question. In this study, we overcome
the limitation imposed by the similarity query interface, and show that the data
of interest can be automatically retrieved while minimizing the burden on the
resource constraints of the database owners.

The results of this study also have critical implications in database security,
where the discovery of the data is not desired by the providers. Specifically,
we show that the whole database can be discovered through similarity queries.
We give recommendations for preventive measures where privacy or proprietary
concerns lead the query interface limitation.

We have previously identified two main models of similarity search queries
[22]:

– Reply Model. Client queries vector x and database responds with the closest
k vectors yi (i = 1 . . . k).

– Score Model. Client queries vector x and database responds with similarity
score ‖ x − y ‖, where y is the closest vector in the database to the x.

In this paper, we focus on the Score Model, where a rigorous analysis was
missing. The contributions of this paper can be summarized as follows:

442 F. Altiparmak et al.

– Data discovery through similarity score queries is proven under a general
probing strategy.

– A strategy using query histories is developed to improve the efficiency of the
data discovery

– The methods are generalized to multi-dimensional case, and to Lp − norm
distance measures

2 Methods

In the score model, upon receiving a similarity query x from user, the database
responds with the similarity score ‖ x − y ‖ [8], where y is the closest point in
the database to x. Assume that l1, l2, and u1, u2 are the coordinates of the two
corners on the same diagonal of the minimum rectangle bounding the region of
interest in 2-dimensional space. Further assume that the closest distance between
any two points in the database is given as c.

A basic data discovery approach where the database consists of a single n-
dimensional vector y was given in [22]. We reiterate this basic approach and its
proof here in Algorithm 1 for completeness. The function createV ector(d, i, v)
creates a d dimensional vector which has 0 in all dimensions but v in the ith

dimension. The n-dimensional vector y can be discovered using n + 1 queries.
So, for 2 dimensions, 3 queries would be needed.

Algorithm 1. Algorithm to discover y

1: n = dimensionality of vectors x and y
2: q1 = sim search([0, 0, ...0])
3: for i= 1 to n do
4: q2 = sim search(createV ector(n, i, 1))

5: yi = q2
2−q2

1−1
−2

6: end for

Lemma 1. Algorithm 1 discovers y.

Proof. Consider ith iteration of the loop. We have q1 = (
∑n

k=1(yi)2)1/2 and
q2 = ((yi −1)2 +

∑n
k=1,k �=i(yi)2)1/2. By simple algebra we get q2

2 −q2
1 = −2yi +1.

We can solve this equation to find yi.

Now let us consider a database with large number of tuples. In this case, the
basic approach in Algorithm 1 can not be used since queries q1 and q2 can return
scores based on different vectors in database. The example shown in Figure 1
returns a score of 1 for similarity search (0, 0) and returns a score of 1/2 for
similarity search (0, 1). These are not comparable since their distances are to
different nodes.

In the following sections, we first explain our proposed discovery strategy for
2 dimensions using l2 (Euclidian) distance and then generalize it to n dimensions
using lp norm as the distance metric. For notational clarity, we first consider the

Automated Data Discovery in Similarity Score Queries 443

(1/2,1)

(0,0)

(0,1)

Fig. 1. Discovery of multiple points. Algorithm 1 is insufficient in correctly discovering
the data.

problem of discovering the whole database; i.e., all the data points lie within
the region of interest. The extension to discovery of a region of the database is
trivial and discussed later.

2.1 Discovery of Multiple Data Points in 2 Dimensions

In order to discover every point in the database, closely located queries need to be
sent to ensure that all the queries return a score to the same data point. Assume
that the whole space is divided into equally spaced squares and that the length of
an edge of the square, which is also the distance between two consecutive probes,
is c′. In the best case, n + 1=3 probes having the coordinates x,y,x,y+c′,x+c′,y
are required to return scores to the same data point to guarantee discovering it.

Recall that we have the probes and the associated scores, but do not have
any information identifying the data point for the returned score. Therefore,
to discover data points when the databases use the score model, we must take
advantage of all the information at hand: the returned scores and the distance
between probes, c′. The task becomes finding a probe distance c′ such that
putting a condition on the returned scores for the nearby probe points guarantees
that the score returned by each of them is to the same data point. In the following
lemma we put a condition, maximum score, on the returned distance for a probe
to guarantee that each of its c′ distanced neighbors returns a score to the same
data point.

Lemma 2. Let the score for a probe p = (x, y) be δ where δ ≤ c
4 and the closest

point to probe p be q = (s, t). Then the closest point to probes p2 = (x + c
4 , y),

p3 = (x − c
4 , y), p4 = (x, y + c

4), and p5 = (x, y − c
4) is q = (s, t).

Proof. Consider the distance d(p2, q). By triangle inequality we have d(p2, q) ≤
d(p2, p)+d(p, q) ≤ δ + c

4 . Therefore, d(p2, q) ≤ c
4 + c

4 ≤ c
2 . Since c is the smallest

distance between pairs, closest point to probe p2 = (x+ c
4 , y) is q = (s, t). Proofs

for p3, p4, p5 are similar.

The required distance, c/4, and c′, c
4 , are selected such that sum of them is ≤ c/2

and at least one of the corners of the square a data point lies in returns a score
≤ the required distance, c/4 to the point. Algorithm shown in Figure 2 utilizes
lemma 2 to discover all points in a two dimensional space.

444 F. Altiparmak et al.

Algorithm 2. The General Probe Algorithm
1: α1 =�u1−l1

c/4 � + 1
2: α2 =�u2−l2

c/4 � + 1
3: for i= 0 to α1 − 1 do
4: for j= 0 to α2 − 1 do
5: probe[1] = l1+i c

4
6: probe[2] = l2+j c

4
7: disti,j = dist search(probe)
8: end for
9: end for

10: for i= 0 to α1 − 2 do
11: for j= 0 to α2 − 2 do
12: if disti,j ≤ c/4 then

13: y1 =
dist2i+1,j−dist2i,j

c/4 −2(l1+i c
4)−c/4

−2

14: y2 =
dist2i,j+1−dist2i,j

c/4 −2(l2+j c
4)−c/4

−2
15: if y not in database then
16: save y
17: end if
18: end if
19: end for
20: end for

Theorem 1. The General Probe Algorithm in Algorithm 2 discovers the whole
database.

Proof. To make the proof complete we need to show for each data point that

(1) at least one probe exists such that distance between
the probe and the data point is ≤ c

4 and
(2) algorithm guarantees to find the data point.

The proof for each item will be made separately.
(1) Since voronoi regions cover the whole region, each data point lies in a

square having edge of c
4 . Hence, the longest distance between a data point and

the nearest corner of the square it lies into can be c
√

2/8 which is less than c/4.
Thus, at least one of these probes will return a score ≤ c

4 to the point.
(2) As stated by Lemma 2, each of the probes with indices {i, j}, {i+1, j} and

{i, j+1} returns the distance to the the same data point if the returned distance
for {i, j} ≤ c

4 . Let us call this data point y. We have disti,j = ((l1 + i c
4 − y1)2 +

(l2 + j c
4 − y2)2))1/2 and disti+1,j = ((l1 + (i + 1) c

4 − y1)2 + (l2 + j c
4 − y2)2))1/2.

By simple algebra we get dist2i+1,j − dist2i,j = c
4 (−2y1 + 2(l1 + i c

4) + c
4). We can

solve this equation to find y1. We can find y2 similarly by considering probe with
indices {i, j + 1} instead of {i + 1, j}. Since we have shown that such a probe
exist for each data point, the algorithm will discover the whole database.

The General Probe Algorithm divides the space into a grid and queries the
database with the corners of this grid. The distance between two consecutive

Automated Data Discovery in Similarity Score Queries 445

probes is c/4 to guarantee that for each data point, at least one of the probes
belonging to the corners of the square that the data point lies in returns a score
less than or equal to the required distance, c/4. Therefore, there is at least one
probe within c/4 distance to each point and by using Lemma 2 the point can be
discovered.

2.2 A Progressive Probing Algorithm

A very small value for c, the minimum distance between data points, can cause
the General Probe Algorithm to generate an infeasible number of probes. As
suggested in [22], a progressive probing scheme can be utilized to hierarchically
sample the database, and in turn, to discover the data in finer detail as the
number of probes increases.

The progressive scheme is expected to be better at discovering more of the
database with earlier queries since it spreads the probe points. The total of the
indices is used and the level of a probe is calculated by the modula operation.
For example, for two dimensions modula of the sum of row number and column
number is used for calculating the level of a probe. As an example, levelno for a
two dimensional space divided into 5 columns and 5 rows is 4 (�max row index
+ 1 + max column index + 1�). The probe pattern of progressive discovery for
this space is given in Figure 2.

Level 1 Level 2 Level 4Level 3

Fig. 2. Levels of Progressive Probing in 2 dimensions

2.3 Exploiting the Query History

The General Probe Algorithm is based on querying the database at each of
the interval points. However, some of these probes may be redundant, and it
is possible to eliminate such probes based on the information obtained from
previous queries. To discover every point in the database, the space can be
divided in a way that there exist (n+1) probes for each data point that return
score≤ c/2 to the point. The returned scores for most of the queries will be
larger than c/2, which would guarantee that the nearby probes return scores to
the same data point. It is possible to eliminate unnecessary probes based on the
information obtained from previous queries.

In Figure 3, the database returns distance value s for a query probe p whose
nearest neighbor is the data point y. The c′ is taken as c/4 as found above.
Lemma 2 states all probes having distance c′ to a probe p will return a score
to the same data point if the returned score for p is ≤ c/4. In the proof of this
Lemma we showed that all these probes will have at most a score of c/2. Since

446 F. Altiparmak et al.

p

y

s-c/2

s

c’

Fig. 3. Elimination of Redundant Probes

there is no other data element within the outer circle, any probe in the inner
circle cannot have a score ≤ c/2. Hence, the probes in the inner circle except p
are redundant and can be eliminated.

2.4 Extension to Higher Dimensions and to lp Norm

We will extend the solution presented for 2 dimensions to n dimensions in three
steps. As a first step, we will show that there is a solution for the simple case
where the database has only one point. Then the function to calculate the total
number of probes in n dimensions is provided. This function depends on the
distance metric (lp norm) and n. The last step is to generalize Lemma 2, on
which solution was built, to the case where we have n dimensions and use the lp
norm as the metric.

Definition 1. lp norm between n dimensional vectors x and y is defined as
lp(x, y) = (

∑n
i=1 |xi − yi|p)1/p.

The solution shown in Algorithm 3 is an extended version of the solution in Al-
gorithm 1. There are two differences between these solutions. The first difference
is that we send a value of −1 instead of a value of 1 in the appropriate dimension
when we are gathering information about a dimension. The other difference is
that while for 2 dimensions using l2 norm we can find an exact solution for yi,
we can only show that a unique real solution exists for n dimensions using lp
norm.

Algorithm 3. Algorithm to discover y for n dimensions
1: q1 = sim search([0, 0, ...0])
2: for i = 1 to n do
3: q2 = sim search(createV ector(n, i, −1))
4: Compute yi

5: end for

Automated Data Discovery in Similarity Score Queries 447

Theorem 2. Algorithm in Algorithm 3 discovers y for every lp.

Proof. Consider ith iteration of the loop. Using the definition of lp norm, we
have

q1 = (
n∑

j=1

|yj |p)1/p

and

q2 = (|yi + 1|p +
n∑

j=1,j �=i

|yj |p)1/p

By using above equation we have

qp
2 − qp

1 = |yi + 1|p − |yi|p

Left hand side is known since we know q1, q2 and p. As q1 and q2 are returned for
the same data point, we know that this equation has at least one real solution,
yi. Therefore, we need to prove the uniqueness of the solution to discover yi.
We need to show that this is an increasing function in each of the possible 3
intervals, ≥ 0, [−1, 0), and < −1, to prove the uniqueness of the solution.

	 yi ≥ 0: The expression becomes (yi + 1)p − (yi)p. If we take the derivative
with respect to yi we get

p(yi + 1)p−1 − p(yi)p−1

Since p ≥ 1 above expression is always positive. Therefore, in this interval
the function is increasing.

	 −1 ≤ yi < 0: The expression becomes (yi + 1)p − (−yi)p. If we take the
derivative with respect to yi we get

p(yi + 1)p−1 + p(−yi)p−1

Above expression is always positive therefore, in this interval the function is
increasing.

	 yi < −1: The expression becomes (−(yi + 1))p − (−yi)p. If we take the
derivative with respect to yi we get

−p(−(yi + 1))p−1 + p(−yi)p−1

If we reorganize the expression we get

p((−yi)p−1 − (−(yi + 1))p−1)

Since the first term in the parenthesis is always greater than the second one,
the derivative is always positive in this interval. Hence, in this interval the
function is increasing.

The function is increasing in all of the intervals, thus it is an increasing func-
tion. As a result, independent from p we have a unique real solution for yi and
it can be computed by Newton’s method.

448 F. Altiparmak et al.

The total number of probes for n dimensions is found by multiplying the number
of probes needed for each dimension separately. The following theorem considers
this fact and the gives the method to find the common distance between closest
probes, c′.

Theorem 3. For the score model, general scheme in n dimensions utilizing lp
norm as the distance metric requires

∏n
i=1�ui−li

c′ � + 1 probes to discover all el-
ements of an n dimensional database where c′ is equal to the minimum of c/4
and c

2(n)1/p .

Proof. The general scheme divides the whole space into hypercubes having an
edge of c′ which is selected to guarantee that the returned score for at least
one of the probes belonging to the corners of the region that a data point lies
in is ≤ the required distance, c/4. To make this guarantee, c/4 should be the
longest distance between a point and its closest probe. Hence, the diagonal of
the hypercube should be c/2 and an edge of it, c′ should be c

2(n)1/p . However,
we should also consider the requirement that c′ should be ≤ c/4. So, c′ is the
minimum of c/4 and c

2(n)1/p for n dimensions using lp norm.

Lemma 2 is at the heart of the solution for 2 dimensions using l2 norm shown in
Figure 2. The extended version of this Lemma should be used for the solution
for n dimensions using lp norm. We will not make the proof, instead we will
verify that the sum of the required distance, c/4 and the c′ is ≤ c/2. The value
of c′ for n dimensions using lp norm is given in Theorem 3 as the minimum of

c
2(n)1/p and c/4. So, the sum will be less than or equal to c/2. As a result, if the
distance returned for a probe is less than or equal to c/4, all probes which are in
the c′ distance to this probe will return a score to the same data point. In total,
there are 2n such probes.

The proof outline for proving the existence of a unique real solution when
the database contains a large number of data points, and the probe that has
a score ≤ c/4 is considered with its c′ neighbors is to follow the same path as
Theorem 2.

3 Experiments and Results

The methods developed above are applied on four datasets. Three of the datasets
are 2-dimensional each of which represents a different type of distribution. The
first dataset is latitude and longitude of road crossings in Maryland. This data
set is a good example for uniformly distributed data. The second dataset has
points mostly clustered in one region. The third skewed dataset is a correlated
data typically seen in time series data such as stock price movements [10]. For
each of these three data sets, if the data set contained more than 1000 points, we
used a subsampled version with 1000 points. The fourth data set is a clinical data
obtained from a pharmaceutical company1. The data contains measurements of
1 We wish to thank Pfizer, Inc. for kindly providing the patient dataset.

Automated Data Discovery in Similarity Score Queries 449

4 blood ingredients for 244 patients. Half of these patients were suffering from
arthritis, while the other half were from a healthy control group.

The General and Progressive methods were applied with query history to
eliminate unnecessary probes. Since we do not utilize any distance > c/2 while
discovering a data point, we used already sent queries to eliminate probes which
have scores more than > c/2. Results are summarized in Figure 4.

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000

of

 p
oi

nt
s

di
sc

ov
er

ed

of queries

Performance of Different Probing Schemes for Latitude Dataset

General
Progressive

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000 40000

of

 n
od

es
 d

is
co

ve
re

d

of queries

Performance of Different Probing Schemes for Clustered Dataset

General
Progressive

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

of

 p
oi

nt
s

di
sc

ov
er

ed

of queries

Performance of Different Probing Schemes for Skewed Dataset

General
Progressive

0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000 80000

of

 p
oi

nt
s

di
sc

ov
er

ed

of queries

Performance of Different Probing Schemes for Patient Dataset

General
Progressive

Fig. 4. Performance of General and Progressive probing using history

Because of the leveling strategy used in the progressive model, queries that
are next to each other are not sent until the last level. Therefore, this strategy
does not find any points until it starts to send the probes on this last level. On
the other hand, the distribution of probes resulting from the progressive scheme
eliminates more probes than the general scheme. This phenomenon is shown in
the graphs in Figure 4. The progressive scheme does not begin to discover points
until the general scheme has already discovered about half the database, but it
completely discovers the database before the general scheme does.

4 Discussion

Web-based search engines and many biomedical and clinical databases utilize
similarity search as their major type of query. In this paper we showed how the
data in numeric databases can be discovered through similarity score queries.
The methods we have developed were extended to multi-dimensional data, and
to lp-norm distance measures. Using a progressive scheme and exploiting the
results of previous queries, we were able to improve the performance over the
general probing strategy significantly.

Using the methods we have developed, it is now possible to discover data
within a range, or the whole database using results of similarity score queries.
This effectively removes the limitation imposed by the query interfaces and lets

450 F. Altiparmak et al.

the researchers extract the data of their interest through the query interface
channel they have been provided with. Instead of downloading an outdated snap-
shot of the whole database, the researchers can obtain the up-to-date information
for the portion of the database that they are interested in.

We believe that the data discovery methods provided here would also relieve
the database providers of the burden of providing customized data to each re-
quest coming from the researchers. The database providers will not have to spend
effort to extend the query interface, or to compile data for individual research
interests.

The results of this study also present critical implications for data security [22],
where the original data is hidden intentionally, and their discovery is not desired.
If this is the case, we have shown that providing a similarity score query interface
can not hide the original data. There are certain measures the database owners
can practice for detection and prevention of data-discovery attacks, following the
results of this study.

A simple data protection mechanism can rely on investigating the number of
queries to the same nearest neighbor data point. We have shown that at least n+1
probes are required for the discovery of a data point in n-dimensional space. By
refusing to reply to requests that cause the number of such probe queries to exceed
n, the database system can effectively prevent malicious discovery of the data.

References

[1] Ankerst, G., Kastenmüller, M., Kriegel, H., Seidl, T.: Nearest neighbor classifica-
tion in 3d protein databases. In: Proc. 7th Int. Conf. on Intelligent Systems for
Molecular Biology (ISMB 1999) (1999)

[2] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching. In: 5th Ann. ACM-SIAM
Symposium on Discrete Algorithms, pp. 573–582 (1994)

[3] Berchtold, S., Bohm, C., Keim, D., Kriegel, H.: A cost model for nearest neighbor
search in high-dimensional data space. In: Proc. ACM Symp. on Principles of
Database Systems, Tuscon, Arizona, June 1997, pp. 78–86 (1997)

[4] Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor
meaningful. In: Int. Conf. on Database Theory, Jerusalem, Israel, January 1999,
pp. 217–225 (1999)

[5] BrightPlanet.com. The deep web: Surfacing hidden value (2000) Accessible at,
http://brightplanet.com

[6] Cheng, X., Dolin, R., Neary, M., Prabhakar, S., Kanth, K.V.R., Wu, D., Agrawal,
D., Abbadi, A.E., Freeston, M., Singh, A.K., Smith, T.R., Su, J.: Scalable access
within the context of digital libraries. In: Advances in Digital Libraries, pp. 70–81
(1997)

[7] Ciaccia, P., Patella, M.: PAC nearest neighbor queries: Approximate and con-
trolled search in high-dimensional and metric spaces. In: Proc. Int. Conf. Data
Engineering, San Diego, California, March 2000, pp. 244–255 (2000)

[8] Du, W., Atallah, M.: Protocols for secure remote database access with approxi-
mate matching. In: 7th ACM Conference of Computer and Communications Secu-
rity (ACMCSS 2000), The First Workshop on Security and Privacy in E-commerce
(2000)

http://brightplanet.com

Automated Data Discovery in Similarity Score Queries 451

[9] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A.E.: Constrained nearest
neighbor queries. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, Springer, Heidelberg (2001)

[10] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., El Abbadi, A.: Vector approxima-
tion based indexing for non-uniform high dimensional data sets. In: Proceedings
of the 9th ACM Int. Conf. on Information and Knowledge Management, McLean,
Virginia, November 2000, pp. 202–209 (2000)

[11] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., El Abbadi, A.: Approximate near-
est neighbor searching in multimedia databases. In: Proc of 17th IEEE Int. Conf.
on Data Engineering (ICDE), Heidelberg, Germany, April 2001, pp. 503–511
(2001)

[12] Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: 30th ACM Symposium on Theory of Computing,
Dallas, Texas, May 1998, pp. 604–613 (1998)

[13] Ipeirotis, P.G., Gravano, L., Sahami, M.: Probe, count, and classify: Categorizing
hidden web databases. In: SIGMOD Conference (2001)

[14] Jacob, K.J., Shasha, D.: Fintime – a financial time series benchmark (March
2000), http://cs.nyu.edu/cs/faculty/shasha/fintime.html

[15] Kahveci, T., Singh, A.K.: Efficient index structures for string databases. The
VLDB Journal, 351–360 (2001)

[16] Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast and effi-
cient retrieval of medical tumor shapes. IEEE Transactions on Data Engineering
(TKDE 1998) (1998)

[17] Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast nearest
neighbor search in medical image databases. The VLDB Journal, 215–226 (1996)

[18] Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast nearest
neighbor search in medical image databases. In: Proceedings of the Int. Conf. on
Very Large Data Bases, Mumbai, India, pp. 215–226 (1996)

[19] Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast and
effective retrieval of medical tumor shapes. IEEE Trans. Knowl. Data Eng. 10(6),
889–904 (1998)

[20] Meng, W., Yu, C.T., Liu, K.-L.: Building efficient and effective metasearch en-
gines. ACM Computing Surveys 34(1), 48–89 (2002)

[21] Roussopoulos, N., Kelly, S., Vincent, F.: Nearest neighbor queries. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data, San Jose, California, May 1995, pp.
71–79 (1995)

[22] Tosun, A.S., Ferhatosmanoglu, H.: Vulnerabilities in similarity search based sys-
tems. In: CIKM, pp. 110–117. ACM, New York (2002)

[23] Weber, R., Bohm, K.: Trading quality for time with nearest-neighbor search. In:
Proc. Int. Conf. on Extending Database Technology, Konstanz, Germany, March
2000, pp. 21–35 (2000)

[24] Whalley, M.R.: The Durham-RAL high energy physics database - HEPDATA.
Computer Physics Communications 57(1-3), 536–537 (1990)

http://cs.nyu.edu/cs/faculty/shasha/fintime.html

	Automated Data Discovery in Similarity Score Queries
	Introduction
	Methods
	Discovery of Multiple Data Points in 2 Dimensions
	A Progressive Probing Algorithm
	Exploiting the Query History
	Extension to Higher Dimensions and to l$_p$ Norm

	Experiments and Results
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

