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Abstract

Sequence similarity search of proteins is one of the
basic and most common steps followed in bioninformatics
research and is used in making evolutionary, structural,
and functional inferences. The quality of the search and
the alignment of the protein sequences depend crucially on
the underlying amino-acid substitution matrix. We present
a method for deriving amino acid substitution matrices
from 4-body contact propensities of amino-acids in 3D
protein structures. Unlike current popular methods, our
method does not rely on mutational analysis, evolutionary
arguments, or alignment of protein sequences or structures.
The alignment accuracy of our derived matrices is eval-
uated using the BAliBASE reference alignment set and is
found to be comparable to that of popular matrices from
the literature. Notably, the metric subset of our matrices
outperform other available metric matrices. Our matrices
will be useful especially in the development of empirical
potential energy functions and in distance-based sequence
indexing.

Supplementary Material: Our substitution matrices and
detailed alignment data can be obtained from http://www.
ceng.metu.edu.tr/∼ahmet/bioinfo/distmat
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I. Introduction

Alignment of protein sequences has been one of the
most widely utilized tools of bioinformatics research
[8]. Applications of sequence alignment and comparison
include finding homologous proteins, predicting protein
structure or function, and defining the phylogeny of the
species.

An alignment score is defined as the sum of individual
scores of the aligned residues as looked up from a residue
scoring matrix, and is used in database searches for similar
sequences. Optimal alignment score of two sequences can
be obtained using the dynamic programming algorithm
[19, 27]. Rapid increase in the size of protein sequence
databases has rendered calculation of the optimal align-
ments unfeasible and has prompted the development of
near-optimal heuristic approaches like BLAST [1] and
FASTA [21].

The quality and significance of database search results
and sequence alignments depend strongly on the underly-
ing residue scoring matrix and the gap cost function. For
computational convenience, affine gap penalty is used in
practice [10] and gap opening and gap extension penalties
are determined by statistical optimization on a reference
alignment set.

The popular scoring matrices are based on the log-
likelihood of residue substitutions obtained from the fre-
quencies of mutations observed in the sequence alignment
of similar proteins. The initial alignments were constructed
either by hand [4], by automated alignments from large
sequence databases [9] or by the alignment of conserved
blocks [12].

Structural superpositions have also served as a basis
for alignment of sequences and counting of substitutions
[14]. Protein structures can be aligned even in the absence
of significant sequence similarity. Substitution matrices
derived from structural alignments are especially useful in
detecting distantly related sequences and similarities that
result from convergent evolution.

Other methods of obtaining residue exchangeability
include evaluation of engineered mutations either by ex-
perimental assay studies [30], or by computational fitness
functions such as those based on force fields [5]. Physico-
chemical properties such as hydrophobicity, volume, and
conformational preferences have also been used as a basis



for similarity measures [11, 20].
In this study, we use the multi-body contact propensities

of residues in three dimensional protein structures as the
basis for amino-acid similarity. Amino-acids have previ-
ously been found to have non-random multi-body contact
preferences [26] and this property has been exploited in
development of statistical pseudo-potentials to discriminate
native and non-native protein conformations [15]. We use
these non-random preferences to derive an amino-acid
scoring matrix to be used in protein sequence alignments.
We expect that this scoring matrix will be suitable for
detecting remote homologs that share structural similar-
ities. Moreover, the unique features of this matrix make
it especially useful in the development of contact-based
empirical potential energy functions and in the distance-
based indexing of protein sequences.

Substitution matrices that form metric-distance func-
tions are highly desirable in the distance-based indexing
of protein sequences. A subset of the matrices developed
in this study form metric-distance functions, such that the
following properties are satisfied for any three amino acids
x, y, andz:

1) Identity: d(x, y) = 0 iff x = y

2) Positivity: d(x, y) ≥ 0
3) Symmetry:d(x, y) = d(y, x)
4) Triangle Inequality:d(x, y) ≤ d(x, z) + d(y, z)

Sensitive metric matrices are a prerequisite to the de-
velopment of fast sequence analysis algorithms that are
both scalable and sensitive [29]. The metric matrices we
derived outperform previous metric metrices in alignment
accuracy.

II. Methods

Due to its objective and robust definition and well–
defined geometric properties, Delaunay tessellation has
been the method of choice for extracting multi-body con-
tacts from protein structures [26]. The protein is modeled
by a set of points representing the amino-acids. The region
of space around each point that is closer to the enclosed
point than any other point defines a Voronoi polyhedron.
(See Figure 1). Delaunay tessellation is obtained by con-
necting points that share a Voronoi boundary. In 2D, each
triangular area in the Delaunay tessellation defines a set of
3 points that are in contact. In 3D, each tetrahedra gives a
set of 4-body contacts.

There are several ways of representing amino acids of a
given protein structure. Here, we use the most commonly
used representations: location of the alpha Carbon atom
(CA), location of the beta Carbon (CB), or the centroid
of the side-chain atoms (CENT ). Glycine lacks a CB
atom, so for Glycine, CA is used instead of CB. For

Fig. 1. Delaunay tessellation (dashed lines)
and Voronoi diagram (solid lines) of a set
of points in 2D. In 3D, Delaunay tessellation
gives space-filling tetrahedra.

each of these representations, the Delaunay tessellation is
computed using the Quickhull algorithm [2].

For a given protein structure, the Delaunay tessellation
results in a list of amino-acid quadruplets defining the 4-
body contacts. We record the frequency of observing an
amino acid type in contact with the remaining three amino
acids in the quadruplet. This gives us a frequency matrix of
size 20 by 8000, where each row stands for an amino acid
type, and each column represents different combinations
of the remaining three amino acids. We call each row of
this matrix the4-body contact profileof the corresponding
amino acid.

We postulate that the exchangeability of amino acids
in three dimensional structures would be reflected in their
Delaunay contact profiles. An amino acid substitution can
thus be derived from the contact profiles matrix. We use
both the Euclidean distance (EUC) and Pearson’s corre-
lation (COR) measures between the rows of the contact
profiles matrix in order to quantify the exchangeability of
amino-acids. The Euclidean distance is defined as:
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√

√

√
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wheredeuc
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corresponding rows of the contact profile matrix. Similarly,
the correlation distance is defined as:
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where µA denotes the mean value of the row A of the
contact matrix. Each of these distance functions define
a target 20 by 20 amino acid substitution matrix. We
refer to these matrices as theEuclidean matricesand the
correlation matrices, respectively, in this presentation.



III. Experiments

The PDBselect25 [13] representative dataset, which
contains a non-redundant set of PDB (Protein Data Bank
[3]) structures with less than 25% mutual sequence iden-
tity, was used for the derivation of contact profiles and
the construction of substitution matrices. The downloaded
version of PDBselect25 used in this study was compiled
in January 2007 and contained 3080 proteins.

Using three types of amino acid representations (CA,
CB, and CENT) and two types of distance measures
(EUC and COR), a total of six substitution matrices were
obtained. The derived matrices were compared with 16
other matrices from the literature (see Table I for a list of
matrices). For completeness, an identity matrix was also
included. Comparison and analysis of matrices were per-
formed via principal component analysis and hierarchical
clustering. These methods have been noted to be sufficient
to highlight the overall relationship between matrices [16].

Figure 2 shows a gray-scale depiction of matrix corre-
lations based on sample correlations of their 400 elements.
An unweighted average distance (UPGMA) clustering of
matrices from these correlations is also obtained (Figure
3). The type of amino acid representation (CA, CB, and
CENT) does not have a significant effect on the resulting
matrix as can be seen from the high correlations among the
corresponding matrices. This is due to only a small frac-
tion of the tetrahedrons differing among the tessellations
obtained from different amino acid representations.

On the other hand, the choice of distance measure gives
qualitatively different matrices. The Euclidean measure is
sensitive to the background frequencies of amino acids in
the initial protein structure dataset, and theEuclidean ma-
trices reflect this bias. Whereas, the correlation coefficient
results in exchange values normalized for the background
frequencies of amino acids.

The correlation matrices (CA-COR, CB-COR, and
CENT-COR) are found to be most closely correlated
to the NAOR [18] substitution matrix with an average
correlation coefficient of 0.76. NAOR has been derived
from amino acid interchanges observed at spatially, locally
conserved regions in globally dissimilar and unrelated pro-
teins. Although Delaunay tetrahedra form a more granular
motif, we conjecture that the tetrahedra contacts derived
in this study share common overall characteristics with
the conserved substructural motifs studied by Naor et al.
[18]. Note that Delaunay tessellations have, in fact, been
found useful in discovering locally conserved structural
sites [25].

Unlike thecorrelation matrices, theEuclidean matrices
(CA-EUC, CB-EUC, and CENT-EUC) do not show sig-
nificant correlation with any other substitution matrix. We
attribute this to the inherent bias of the Euclidean measure
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Fig. 2. Correlation of matrices based on the
pairwise sample correlation of matrix ele-
ments. The higher the correlation between a
pair of matrices, the darker the correspond-
ing cell.
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Fig. 3. UPGMA clustering of matrices based
on correlation of matrix elements

to the background amino acid frequencies; this bias is not
present in the other matrices.

Analysis of the matrices at the amino acid level can help
characterize the physico-chemical properties underlying
the amino acid exchanges. We observed that the exchange
values defined in thecorrelation matricesare strongly
related to the hydrophobicity of the amino acids. In Figure
4, the substitution matrix CA-COR is represented as a
projection on the first two principal components. The first
principal component is essentially a hydrophobicity scale
with hydrophobic residues on the left, and hydrophilic and
charged residues clustered on the right.



Matrix name Short name Reference Based on
PAM250 PAM [4] sequence alignment of similar proteins
mPAM mPAM [29] expected time between mutations in aligned sequences
BLOSUM30,40,50,62 B30,40,50,62 [12] sequence alignment ofconserved blocks in related proteins
GONNET GO [9] exhaustive automated sequence alignments
RISLER RI [23] structural alignment of related proteins
JOHNSON JO [14] structure based sequence comparison
MIYAZAWA MJ [17] base substitution – protein stability
NAOR NA [18] structural alignment of spatially conserved substructural motifs
REMOTEHOMO RE [24] structural alignment of remote homologs
ANALOGOUS AN [24] structural alignment of analogous proteins
COMBINED CO [24] structural alignment of analogous and remotehomologs
SDM SDM [22] structurally equivalent residues of analogousproteins
HSDM HSDM [22] structurally equivalent residues of homologous proteins
CA-COR CAC present study correlation of Delaunay contact profiles from CA atoms
CB-COR CBC present study correlation of Delaunay contact profiles from CB atoms
CENT-COR CNC present study correlation of Delaunay contactprofiles from side chain centers
CA-EUC CAE present study Euclidean distance of Delaunay contact profiles from CA atoms
CB-EUC CBE present study Euclidean distance of Delaunay contact profiles from CB atoms
CENT-EUC CNE present study Euclidean distance of Delaunay contact profiles from side chain centers
IDENTITY ID present study identity matrix

TABLE I. Substitution matrices used for comparison
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Fig. 4. Principal component analysis of the
matrix CA-COR. The first and second princi-
pal components account for the 72.7% and
24.7% of the variation in the matrix values.
Cysteine residue with coordinates -18.2,20.2
is omitted from the figure for illustration pur-
poses. The analysis for the other matrices
can be found in the Supplementary Material.

The first eigenvector of the CA-COR matrix and the
hydrophobicity scale of Fasman [6] are indeed highly cor-
related, with a coefficient of 0.93. The strong correlation
with hydrophobicity scales is no surprise because protein
folding and, as a result, the Delaunay contacts are guided
by hydrophobic interactions among amino acids residues.

In order to evaluate the sequence alignment perfor-
mance of our derived matrices, we used the BAliBASE
[28, version 3] suite of reference alignments. Pairwise

alignments for each multiple alignment were extracted to
result in a total of 155,550 pairs of sequences. For each
substitution matrix, pairwise alignment of sequences was
performed using Gotoh’s algorithm [10] with affine gap
penalties. The optimal gap penalties were used as found by
Prlic et al. [22]. For matrices where optimal gap penalties
were not available, we used parameters interpolated from
those of the PAM250 matrix.

Substitution Matrix Alignment accuracy
SDM 63.0
HSDM 62.6
GONNET 61.8
BLOSUM30 60.6
PAM250 60.3
MIYAZAWA 58.9
RISLER 58.7
NAOR 58.6
CA-COR 58.5
CB-COR 58.3
BLOSUM40 58.2
CENT-COR 57.9
CENT-EUC 56.0
CA-EUC 55.7
CB-EUC 55.7
BLOSUM50 54.9
REMOTEHOMO 54.9
BLOSUM62 54.8
JOHNSON 53.7
mPAM 52.5
IDENTITY 22.5
COMBINED 19.1
ANALOGOUS 14.4

TABLE II. Alignment accuracy of matrices

The performance of a matrix is defined as the per-
centage of the correctly aligned residues compared to the
reference alignment. The summary results of the sequence
aligments are tabulated in Table II. The break-down of the
results to individual BAliBASE subsets can be obtained



from the Supplementary Material. The ranking of the
matrices obtained here for the BAliBASE dataset are
comparable to those found by Prlic et al. [22] on their
smaller data set of 122 protein pairs. Only PAM250 had a
significantly higher performance ranking on the BAliBASE
database, compared to the rankings in [22].

The performance of substitution matrices depend on
the degree of similarity of the aligned sequences, with
lower scores for sequences that have lower sequence
identity. However, the ranking of matrix performance is
found to be similar across different BAliBASE subsets.
The performance of our derived matrices are comparable
to that of other matrices. Among our derived matrices,
the correlation matricesperform slightly better than the
Euclidean matrices.

The Euclidean set of similarity matrices (CA-EUC,
CB-EUC, and CENT-EUC) have a notable feature of
being metric; their corresponding distance matrices satisfy
positivity, symmetry, andtriangle inequality. This is a nat-
ural outcome of the underlying metric Euclidean measure
used for obtaining these matrices. TheEuclidean matrices
outperform mPAM [29] in alignment accuracy, which was
previously shown to be more sensitive than other available
metric matrices.

IV. Discussion

We have generated 4-body Delaunay contact profiles
from a non-redundant set of protein structures. The contact
profiles of amino acid residues were then used to derive an
amino acid substitution matrix. We have investigated the
effects of using different amino acid representations and
different contact profile distance measures on the resulting
matrix.

The correlation matriceswere closely related to the
NAOR [18] substitution matrix which is derived from
amino acid substitutions observed at locally conserved but
globally unrelated protein structures. Furthermore, prin-
cipal component analysis shows a strong correlation of
the correlation matriceswith the hydrophobicity scale of
amino acids. This is of no surprise, because hydrophobic-
ity inherently guides the contacts formed in the protein
structures.

Alignment accuracies of our matrices have also been
illustrated using the BAliBASE multiple alignment dataset
as reference. To the best of our knowledge, this is the first
study to compare the alignment accuracies of the popular
matrices on the comprehensive BAliBASE dataset. The
performance of our matrices was comparable to that of
other matrices. It is interesting to see that the Delaunay
contact profile matrices we have derived, which do not rely
on any evolutionary arguments or on observed substitution
rates, can perform so well.

We believe that the matrices we have derived based on
the unique principles of Delaunay contact profiles make
an important contribution to the set of available amino
acid substitution matrices. Multiple scoring matrices canbe
used to increase the reliability and significance of sequence
alignments [7]. Another advantage of the availability of
various scoring matrices based on different principles is
the ability to select appropriate matrices for specialized
problems.

In applications where distance, rather than similarity,
between sequences is relavant, the similarity matrix is
converted to a dissimilarity matrix by subtracting each
matrix element from the maximum value of the matrix.
However, commonly used matrices fail to meet the con-
ditions of metric distance function. Unequal values along
the diagonal of the commonly used matrices violate the
identity condition, resulting in positive distance values of
a sequence to itself, which is undesirable in distance-based
similarity measures. The elements of the matrices also
violate the triangle inequality, which is a prerequisite to
sensitive sequence indexing methods.

A unique feature of theEuclidean matricesis the
satisfaction of the metric-distance conditions. Moreover,
the Euclidean matricesperform better than other metric
matrices and approach the commonly used non-metric
matrices in alignment accuracy. This makes theEuclidean
matricesespecially suitable in providing sensitive distance
measures between sequences and in scalable distance-
based indexing of protein databases for fast retrieval of
similar sequences.
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